Neurocinema

Zum Wandel der Wahrnehmung im technischen Zeitalter

Stationen des technischen Bildes

Bevor wir die Wechselbeziehung zwischen Apparatewelt und Wahrnehmungswelt näher untersuchen, und zwar in Hinblick auf ihre kognitiven und psychischen Aspekte, wollen wir einige Stufen der Genese des technischen, apparategestützten Bildes rekapitulieren.

Auf das Verschwinden von Realität (Raum und Zeit in ihrer historischen Form) folgte die Simulation von Realität. Auf die fotografische Analyse der Bewegung folgte die kinematographische Synthese der Bewegung. Maschinenbewegte Bilder, der Film, die Illusion des bewegten Bildes, bilden die dritte Station der technischen Bilder.

Räder, Trommeln, Scheiben

Um 1830 konstruierte der große Physiker Michael Faraday die nach ihm benannten Faradayschen Scheiben, die mit Hilfe eines apparativ hergestellten stroboskopischen Effektes »Scheinbewegungen« hervorriefen. Der belgische Physiker, J. A. F. Plateau stellte zur gleichen Zeit erste Unter-

suchungen über stroboskopische Erscheinungen an (griech. strobos = Wirbel oder Drehung, skopein = sehen). d.h. über die Flimmergrenze bzw. den Verschmelzungseffekt von Bildern. 1829 baute er zur Illustration von Bewegungstäuschungen das Anorthoskop, 1832 sein berühmtes Phenakistoskop. 1839 formulierte er das Gesetz des »stroboskopischen Effekts«. Der österreichische Professor für Geometrie Simon Stampfer erfand 1833 die stroboskopischen Scheiben. Wie bei Joseph Plateaus Phenakistoskop wird eine Scheibe mit Perforationsschlitzten, die Zeichnungen von aufeinanderfolgenden Bewegungen trägt, schnell gedreht. Um die Bewegung zu beobachten, schaut der Betrachter durch die Schlitzte auf einen Spiegel, der die Zeichnungen in simulierter Bewegung reflektiert. Um den Spiegel wegzulassen zu können, wurden die Vorrichtungen dahingehend verbessert, daß zwei gegenläufige Scheiben auf einer Welle rotierten.

Scanning und Simultaneität

Im 17. und 18. Jahrhundert entdeckten eine Reihe von Wissenschaftlern (Luigi Galvani, Alessandro Volta, Hans C. Oersted, André M. Ampère, Georg S. Ohm, Michael Faraday und James C. Maxwell) die Fähigkeit von elektrischem Strom, durch verschiedene Werkstoffe, insbesondere Metalle, hindurchzufließen. Die erste praktische Nutzwendung wurde 1843 von Samuel F. B. Morse in Form des »Telegram« (Fernschreibgerät) entwickelt: Die Buchstaben des Alphabets wurden in elektrische Signale über den Umweg des Morsecodes umgesetzt, die entweder auf einem Papierstreifen aufgezeichnet oder von ausgebildeten Telegraphisten direkt transkribiert, d.h. übersetzt wurden. Da die elektrischen Impulse mit annähernder Lichtgeschwindigkeit über TELEgrafenleitungen übertragen wurden, setzte sich die-

Der nächste Entwicklungsschritt war die Übermittlung akustischer Signale über dieselben Leitungen, die bei der Telegrafie der Übertragung von elektrischen Impulsen dienten. 1876 gelang es Alexander Graham Bell als erstem, die menschliche Stimme über einen elektrischen Draht zu übertragen: Das Telefon (die ferne Stimme) war erfunden. 1876 gab es also schon drei Verfahren zur direkten Kommunikation: den Telegraphen, den Kopiertelegraphen und das Telefon. Die Zeit war reif für die Einführung eines visuellen Übertragungssystems.

Bildtelegrafie

Sequenzfotografie und Simultanität

Das medizinische Bild

Das Telebild
Im Rahmen des Internationalen Elektrizitätsumkongresses, der 1900 in Verbindung mit einer entsprechenden Ausstellung in Paris stattfand, hielt ein gewisser Persky am 25. August 1900 einen Vortrag mit dem Titel »Television«. Er beschrieb einen Apparat, der auf den magnetischen Eigenschaften von Selen aufgebaut war. Der von ihm geprägte neue Terminus sollte nach und nach die älteren Bezeichnungen wie »Telephoto« oder »Telektroskop« ersetzen, um eine neu entstandene Kunst und Wissenschaft zu beschreiben: das »Fern-Sehen«.

Frequenz

In den USA hatte Charles Francis Jenkins, der 1895 zusammen mit Thomas Armat den ersten Filmprojektor erfunden hatte, seine Aufmerksamkeit von der Kinematografie auf die Telefotografie und die Television verlagert. 1922 beantragte er sein erstes Patent im Zusammenhang mit der drahtlosen Bildübertragung. Zum Einsatz kamen hier zwei ganz spezielle Abtasteinrichtungen, die von ihm entwickelten "prismatischen" Ringe.

In Deutschland ließ sich Manfred von Ardenne am 27. März 1931 ein Fernsehsystem mit Kathodenstrahlröhren als Sender und Empfänger patentieren. Der Sender war als Lichtpunktabtastsystem für Lichtbilder oder Film ausgebildet. Das neue System wurde erstmals auf der Funkausstellung Berlin 1931 vorgestellt. Von Ardenne verwendete eine Filmschleife, die mit acht Bildern pro Sekunde projiziert wurde. Auch wenn einschränkend gesagt werden muß, daß keine elektrische Aufnahmeröhre beteiligt war, bleibt festzuhalten, daß dies die erste öffentliche Vorführung des Kathodenstrahlfernsehens überhaupt war. 1940 kam es zu einer Übertragung von Farbfernsehen durch CBS.

Die Struktur des TV-Bildsignals

Ist der Bild-Kader der Baustein des Films, so ist die lineare Abfolge von Punkten in der Zeit der Baustein des elektronischen Bildes. Erreignet sich zwischen zwei verschiedenen Kä dern das eigentliche Phänomen der Kinematografie, nämlich die Illusion der Bewegung, so stellt die beschleunigte Manipulation des Bildsignals das eigentliche Phänomen des elektronischen Bildes her, in Echtzeit, d.h. simultan, direkt veränderbar zu sein. 25 Bilder (statt 24 wie beim Film) werden pro Sekunde gesendet, um die Illusion der Bewegung zu erzeugen, aber 50 Bilder wären notwendig, um den Flimmer-Effekt zu vermeiden. Der TV-Schirm erreicht dies durch die Struktur des Halbbildes. Die horizontalen Linien, bestehend aus einer Sequenz von Punkten, werden nämlich
Das Videobild

Als der dänische Ingenieur Valdemar Poulsen 1898, bezeichnenderweise ein Jahr nachdem Braun die nach ihm benannte Röhre für das künftige Fernsehen erfunden hatte, erstmals die Möglichkeit der Informations-Speicherung durch magnetische Bänder zeigte, konnte er nicht ahnen, was das für die Zukunft des Bildes bedeuten würde. Poulsen’s »Telegraphophone« (eine logische Extension von Telegraph und Telefax) zeichnete akustische Information magnetisch auf. Erst viele Jahrzehnte später entstand die Idee, nicht nur Tön, sondern auch Bilder auf magnetischen Bändern zu speichern.

Das elektronische Bild-System

Der Wechsel von mechanischer maschinenunterstützter Erzeugung, Speicherung und Übertragung der Bilder zur elektronischen Erzeugung, Speicherung und Übertragung von Bildern hat also die Natur der technischen Bilder vollkommen verändert, indem sie die Natur der Speicherung der Information und der Bildobjekte vollkommen verändert hat.

Das Bild selbst wird zu einem dynamischen System aus Variablen. Das Verhalten dieser Variablen ist vom Kontext steuerbar. Dieser Kontext kann sein: der Beobachter, der

Interaktive Computer-Installationen und -Simulationen ermöglichen also die Illusion des belebten Bildes als die vorläufig fortgeschrittensste Entwicklungsstufe der Kunst des technischen Bildes. Das interaktive belebte Bild ist die vielleicht radikalste Transformation des europäischen Bildbegriffs.

Mit dem Cyberbild beginnt eine neue Ära der visuellen Kommunikation.

Neurocinema

Die einfachen physiologisch-optischen Erlebniskonstruktionen um 1830, 1860, 1930 und 1950, die Wahrnehmungsexperimente mit dem Auge waren, wurden durch die Gehirn- und Neurowissenschaften, die cognitive Wissenschaft und die Wissenschaften der künstlichen Intelligenz wie des künstlichen Lebens zu Experimenten mit dem Gehirn als Ort der Konstruktion von virtuellen Welten. Der Netz-Gedanke wird dabei eine große Rolle spielen, der darin besteht, daß es erstmals Verbindungen als Knoten geben muß, also keine vertikale Hierarchie, und daß es zweitens stets neue Verbindungen gibt. Die Nervenzellen bleiben lokalisiert, aber die neuronale Tätigkeit besteht gleichsam im Entwer-

Die maschinengestützte Wahrnehmung bedeutet das Ende einer Illusion, das Ende der Herrschaft des Monopols des Realen. Der Herrscher blickte auf die Welt, der Bürger in Zukunft auf den Bildschirm in seinem Geheim.

Unter Umgehung der klassischen elektronischen Schnittstellen wird man mit »brain-chips« oder »neuro-chips« arbeiten, um die Gehirne möglichst verlustfrei und direkt an die digitalen Welten zu koppeln.

Zur Geschichte und Ästhetik der digitalen Kunst

I. Die digitale Bildrevolution

Die Veränderungen, welche die Ankunft des digitalen Bildes für die Bildauffassung des Menschen bedeuten, so ungeheuerlich und einschneidend sie auch sein mögen und werden, wahrscheinlich das wichtigste Ereignis seit der Erfindung des Bildes selbst, sind dennoch in der Geschichte des Bildes vorbereitet.

Wenn wir uns darauf einlassen wollen, den Hauptunterschied zwischen dem traditionellen und dem digitalen Bild darin zu erblicken, daß die klassische Abbildungstätigkeit analoger Natur war, das heißt nach Prinzipien der Ähnlichkeit, Übereinstimmung und Kontinuierlichkeit arbeitete, und die elektronische Abbildungstätigkeit eben digitaler Natur ist, also mit kleinsten, diskontinuierlichen, nichthomologen Elementen arbeitet, dann ist klar, daß wir als Ausgangspunkt unserer Betrachtungen insbesondere jene Kunstbewegungen wählen werden, welche die Ruptur mit der klassischen Bildauffassung vorangetrieben haben, vom Aufstand der Abstrakten zu Beginn des Jahrhunderts bis zur Aktionskunst.

Digitale Kunst

Wir wollen aber bei dieser Unterscheidung, welche allein schon durch den Begriff »digitale Kunst« dialektisch den Begriff »analoge Kunst« hervorruft, worunter dann per definitionem nichts anderes als die bisherige klassische Kunst verstanden werden kann, einige philosophische Ungereimtheiten übersehen wie diese, daß natürlich in der digitalen Kunst analoge Elemente und in der analogen Kunst digitale Elemente vorhanden sind, denn letztem Endes ist jeder kontinuierliche, analoge Vorgang in kleinste diskontinuierliche.